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Abstract
Hypoxia-inducible factors (HIFs) are the main regulatory factors implicated in the adaptation of cancer cells to hypoxic 
stress, which has provoked much interest as an attractive target for the design of promising chemotherapeutic agents. Since 
indirect HIF inhibitors (HIFIs) lead to the occurrence of various side effects, the need of the hour is to develop direct HIFIs, 
physically interacting with important functional domains within the HIF protein structure. Accordingly, in the present study, 
it was attempted to develop an exhaustive structure-based virtual screening (VS) process coupled with molecular docking, 
molecular dynamic (MD) simulation, and MM-GBSA calculations for the identification of novel direct inhibitors against 
the HIF-2α subunit. For this purpose, a focused library of over 200,000 compounds from the NCI database was used for VS 
against the PAS-B domain of the target protein, HIF-2α. This domain was suggested to be a possible ligand-binding site, 
which is characterized by a large internal hydrophobic cavity, unique to the HIF-2α subunit. The top-ranked compounds, 
NSC106416, NSC217021, NSC217026, NSC215639, and NSC277811 with the best docking scores were taken up for the 
subsequent in silico ADME properties and PAINS filtration. The selected drug-like hits were employed for carrying out MD 
simulation which was followed by MM-GBSA calculations to retrieve the candidates showing the highest in silico binding 
affinity towards the PAS-B domain of HIF-2α. The analysis of results indicated that all molecules, except the NSC277811, 
fulfilled necessary drug-likeness properties. Four selected drug-like candidates, NSC106416, NSC217021, NSC217026, and 
NSC215639 were found to expose the stability profiles within the cavity located inside the PAS-B domain of HIF-2α over 
simulation time. Finally, the results of the MM-GBSA rescoring method were indicative of the highest binding affinity of 
NSC217026 for the binding site of the HIF-2α PAS-B domain among selected final hits. Consequently, the hit NSC217026 
could serve as a promising scaffold for further optimization toward the design of direct HIF-2α inhibitors for cancer therapy.
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Introduction

Cancer cells behave differentially when exposed to very 
low oxygen levels for varying periods. When cancer cells 
adapt themselves to a hypoxic environment, significant 
changes in their biological processes are observed. The 
most prominent metabolic switch toward glycolysis can 
significantly lead to a decreased pH in the tumor micro-
environment [1]. In addition, a hypoxic cancer cell is 
more resistant to chemotherapy because of the increased 
expression ratio of drug-resistance genes during hypoxic 
stress [2]. Cancer cells can relieve the tension of hypoxic 
stress by expressing angiogenic factors, such as vascular 
endothelial growth factor protein (VEGF), which induces 
fibroblast and endothelial cells to form new microvessels 
to perfuse the tumor microenvironment [3].

Hypoxic pressure can significantly enhance cancer cells’ 
potential for metastasis and migration toward the other 
host tissues via altering and reforming their extracellular 
matrix [4]. The major regulatory factors responsible for 
orchestrating adaptive responses of cancer cells to hypoxic 
conditions are hypoxia-inducible factors (HIFs). Over the 
last decade, newer studies have noticed the importance of 
HIF factors in the regulation of the metabolic pathways, 
survival and metastatic potential of a variety of hypoxic 
cancer cells, which lacked enough oxygen supply at the tis-
sue level. Over-expression of the HIF pathway in the tumor 
microenvironment appears to be one of the common fea-
tures in almost all solid tumors. Therefore, HIFs have been 
exploited as one of the valuable molecular targets for the 
design of promising chemotherapeutic agents [5]. These 
factors remained popular among researchers through the 
recent decades of experiments on hypoxic cancers [6, 7].

HIF transcriptional factors are heterodimers composed 
of alpha (HIF-α) and constitutive ARNT beta (also known 
as HIF-β) subunits which belong to a large family of basic 
helix–loop–helix/Per-ARNT-SIM (bHLH–PAS) proteins 
[8, 9]. Under well-oxygenated conditions, HIF-α subunits 
are hydroxylated by prolyl hydroxylase (PHD) enzymes 
and are subjected to rapid proteasomal degradation, lead-
ing to HIF suppression.

Yet when oxygen is limited, the activity of the PHD 
enzymes is inhibited resulting in the stabilization of the 
HIF-α subunits. The accumulated HIF-α heterodimer-
izes with HIF-1β and translocates into the nucleus, where 
HIF-α binds to a hypoxia-response element (HRE), in the 
promoter regions of the target genes. Ultimately, this bind-
ing is followed by the activation of expression of a vari-
ety of genes, many of which are coordinately involved in 
angiogenesis, glycolysis, growth factor signaling, tumor 
invasion, and metastasis [10]. The protein level of HIF-α 
subunits depends on the duration and tension of hypoxic 

stress. Each subunit holds a specific time responsibility to 
regulate the cell’s survival, metabolism, and other criti-
cal biological processes that are vital for the adaptation 
of cancer cells to hypoxia [11, 12]. HIF-1α subunit has 
been extensively studied and analyzed in hypoxic cancers 
compared to the isoforms from HIF-α subunits, including 
HIF-2 α and HIF-3 α [13, 14]. There are many potential 
molecular mechanisms to inhibit the activity of HIF-α 
subunits from the initial steps of their cellular translation 
level to the regulation of protein stability, dimerization, 
and transcriptional activity. HIF-α subunits can be inhib-
ited either directly via targeting key functional domains in 
their protein structure, or indirectly through regulation of 
other molecules in the HIF signaling pathway that even-
tually affect the stability and activity of the HIF-α as a 
transcription factor [15].

Indirect inhibitors of HIF-α subunits target upstream sign-
aling proteins such as AKT (Protein kinase B), mammalian 
target of rapamycin (mTOR), histone deacetylase (HDAC), 
P300/CBP (CREB-binding protein), and/or the downstream 
pathways such as anti-VEGF-therapy [16, 17]. Despite those 
indirect inhibitors have successfully decreased HIF-α protein 
levels in cellular experiments, most of these inhibitors suffer 
from high cytotoxicity and various unwanted side effects, 
limiting their clinical utility [18]. Therefore, the need of the 
hour significantly is to develop direct and specific inhibitors 
against HIF-α subunits that physically interact with impor-
tant functional domains within the HIF-α protein structure 
[19–21].

In this respect, one of the two PAS domains in HIF-2α 
(PAS-B) has particularly provided the potential opportu-
nity for the rational design of small-molecule inhibitors. 
Groundbreaking research demonstrated that the PAS-B 
domain of HIF-2α possesses a large internal cavity that car-
ries a hydrophobic core unique to the HIF-2α subunit. This 
well-suited cavity could accommodate ligand binding to 
induce conformational changes that allosterically attenuate 
the protein–protein interaction between HIF-2α and ARNT 
subunits, leading to disruption of HIF heterodimer formation 
and transcriptional activity (Fig. 1) [22–26].

The discovery of a series of small molecules capable of 
binding to the PAS-B internal cavity of HIF-2α and so crip-
pling the heterodimerization of the HIF-2α/HIF-β complex 
validated the HIF-2α as a therapeutic target. In this vein, 
structure-based design approaches led to disclose some 
indanol-based derivatives (is also known as PT derivatives) 
(Fig. 2) with excellent potency as representative inhibitors 
of HIF-2α [27–29]. In particular, these efforts culminated in 
the identification of the first HIF-2α antagonist, PT2385, to 
enter to clinical development [30]. Although PT2385 dem-
onstrated a declined HIF-2-α dependent transcription and 
tumor growth in heavily pretreated advanced clear cell renal 
cell carcinoma (ccRCC) patients, it was disadvantaged by 
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highly variable and dose-limited pharmacokinetics related 
to its extensive metabolism to a glucuronide metabolite by 
UGT2B17 in the intestine [31]. Thus, this necessitates the 
demand for continued research to explore new generation of 
HIF-2 α inhibitors possessing more favorable pharmacoki-
netic profiles while retaining inhibitory potency [31, 32].

In pursuit of this objective, in the current study, we 
implemented a reliable structure-based virtual screening 
(VS) process with the combination of in silico methods 
(molecular docking, molecular dynamic (MD) simulation, 
and MM-GBSA calculations) to seek novel direct HIF-2α 
inhibitors, potentially acting as disruptors of HIF-2α/HIF-β 

dimerization. For this purpose, a focused library of over 
200,000 compounds retrieved from the NCI database was 
exploited for VS against the PAS-B domain of the target 
protein, HIF-2α. X-ray structures of the PAS-B domain of 
the HIF-2α subunit complexed with some small-molecule 
inhibitors are available in Protein Data Bank. Herein, the 
recently solved the co-crystal structure of HIF-2α with PT-
2440 (PDB ID: 6D09) has been exploited to efficiently iden-
tify hits possessing the potential to bind the PAS-B domain 
of HIF-2α. Moreover, in silico drug-likeness and physico-
chemical filters have also been incorporated into this screen-
ing to enrich the final hit compounds with desirable drug-
like features. The flowchart of the VS process applied in this 
study is depicted in Fig. 3. The findings obtained here could 
be served as a foundation for future experimental explora-
tions to motivate the innovative design of a new generation 
of direct HIF-2α inhibitors.

Materials and methods

Selection of ligand library and datasets

The anti-cancer ligand collection of the National Cancer 
Institute (NCI) was used in the current study for VS of the 
molecules, which could act as potential HIF-2α inhibitors. 
This resulted in a library composed of over 200,000 com-
pounds that have been evaluated by the Developmental Ther-
apeutic Program (DTP) (https:// dtp. cancer. gov). DTP is a 
part of the NCI research platform that specifically focuses on 
the assessment and development of new chemotherapeutic 
compounds. DTP has created an ‘open’ anti-cancer library 
of compounds, which are a mixture of synthetic and natu-
ral molecules. The anti-cancer potential of these molecules 
was evaluated through two phases of cell-line experiments, 
including a 3-cell-line screening and a 60-cell-line screen-
ing of human cancer cells with multiple doses of treatments. 
Therefore, the NCI anti-cancer collection was selected for 
further evaluation by in-silico techniques against the HIF-2α 
subunit, to filter potential direct molecules that can get fur-
ther tested in cell-line experiments. The structures of all 
mined molecules were saved in Structure-Data File (SDF) 
format and subjected to the next screening steps.

Preparation and optimization of ligand’s 3D 
structures

For a reliable structure-based screening, the structures 
obtained from the interested library of compounds have 
to be structurally optimized from a 2D conformation to a 
3D energy-minimized conformation. In these conditions, 
properly optimized ligands can better pursue their optimal 
pose of binding with the active site of the targeted protein. 

Fig. 1  Representation of the PAS-B heterodimer of HIF-2α with 
ARNT subunit. The space-filled model of the ligand-binding pocket 
within the PAS-B domain of HIF-2α is marked in red color

Fig. 2  2D chemical structures of some the representative PT deriva-
tives based on indanol scaffold as HIF-2α inhibitors. These deriva-
tives have been reported by recent studies to directly target and inhibit 
the PAS-B domain of the HIF-2α subunit and so, prevent its heterodi-
merization with other subunits, including the ARNT PAS-B domain
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For this purpose, all the members of the obtained library 
were treated by the LigPrep module of Schrödinger suite 
2015 [33], as previously described by us [34, 35]. This 
application tool was able to generate the most probable 
ionization state of the compound’s structure at the cel-
lular pH value (7.4 ± 0.5) using the Epik tool [36, 37]. 
Moreover, molecular energy minimization of the struc-
tures was performed using the OPLS-AA_2005 as a force 
field, which produces the lowest energy conformer for each 
input ligand [38].

Preparation and optimization of protein’s 3D 
structure

Crystal structure of HIF-2α protein from homosapiens spe-
cie (PDB ID: 6D09) was retrieved from the protein data bank 
(https:// www. rcsb. org) [39] to be further prepared using the 
Protein Preparation Wizard (PPW) module of Schrödinger 
Suite 2015 [40]. This protocol allowed us to obtain a rea-
sonable starting structure of the target protein for structure-
based screening experiments using a series of computational 
steps [41]. An important step in the preparation of protein 

Fig. 3  Flowchart representation of the steps followed for the VS 
and employed in this study. A large library of compounds with over 
200,000 synthetic and natural compounds with anti-cancer potential 

has been filtered and screened through multiple steps as shown in the 
flowchart to reach the best potent direct inhibitors against the PAS-B 
domain of the HIF-2α factor
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structure is the removal of unnecessary water molecules and 
ions that are not involved in the binding of the ligand with 
the protein’s active site. The next steps are the addition of 
missing hydrogen atoms to the initial crystal structure of 
the protein using the riding model, fixing broken sidechains 
or missing loops, creating disulfide bonds, and correcting 
the order of bonds as well. Along these modifications, to 
optimize the hydrogen bond network, the protonation states 
of His, Asp, and Glu residues were predicted, 180° rota-
tions of the terminal angle of Asn, Gln, and His residues 
were assigned, and hydroxyl and thiol hydrogens were sam-
pled. The final step of the preparation is energy minimiza-
tion with suitable force fields, which results in better protein 
conformation for further in-silico analyses. Therefore, the 
OPLS-2005 force filed with a root-mean-square deviation 
(RMSD) cutoff value of 0.30 Å, was chosen for the energy 
minimization step that can significantly enhance the stability 
of protein’s structure and its quality for molecular docking 
and dynamic experiments [38].

Receptor grid generation

Selection of a specific grid box is a necessary step before 
starting a molecular docking screening process. A grid box 
is a tridimensional space covering a specific region of inter-
est protein, such as its active site or ligand-binding sites. 
A grid box is an abstract definition of a certain volume in 
space within which the search algorithm explores various 
conformations of the ligands while docking. A good grid 
box must be large enough to encompass the surrounding 
surface of the active site and be capable to accommodate 
the ligands with respect to their size. Considering the goal of 
the current study for screening direct HIF-2α inhibitors, the 
grid box was set on a previously reported large water-filled 
cavity (290 Å) inside the PAS-B domain of HIF-2α, which 
is surrounded between a beta-sheet and an alpha helix. These 
studies have indicated that this cavity could be a potential 
cofactor or ligand-binding site, which could induce confor-
mational alternations, leading to averting HIF-2α heterodi-
merization with its partner, HIF-β subunit or Aryl Hydro-
carbon Receptor Nuclear Translocator (ARNT) [24, 25, 
37]. The grid box for the prepared protein was generated 
using Molegro Virtual Docker software (MVD) [42] and 
centered on the water-filled cavity inside the PAS-B domain 
of HIF-2α with the following coordination: x = 23.06 Å, 
y = − 1.18 Å, z = − 10.97 Å.

Structure‑based virtual screening

The VS module implemented in the Molegro Virtual 
Docker Software (MVD) [42] was used to identify the top 
5% potential ligands with the best MolDock and ReRank 
scores, among NCI anti-cancer library. The MolDock [Grid] 

scoring function is a grid-based version of the THOMSEN 
2006 scoring function, which orders the top-ranked com-
pounds based on their best pose of binding with the pro-
tein’s active site and is faster in pre-calculation of potential 
energy values based on the selected grid box. The ReRank 
scoring function calculates the binding affinity of ligands 
to produce a docking score, which is based on the sum of 
ligand–protein interaction energy and internal energy of 
the ligand [42]. For docking analysis, the number of runs 
was set to 50 times, which determines the number of times 
docking simulations get repeated for each ligand within the 
library. Further options, such as the optimization of H-bond 
positions, which can enhance the optimal direction of rotat-
able H-bonds within the ligand and protein’s structure, and 
Energy minimization were selected to be performed after 
docking analysis. Finally, the 5 top-ranked ligands, display-
ing the best MolDock score values lower than − 135.0 kcal/
mol, were retrieved for further evaluation by a dynamic 
simulation technique.

Prediction of ADME properties

SwissADME online web server (www. swiss adme. ch) was 
employed as an extra filter to exclude less pharmacokineti-
cally suitable hits selected from VSW. This step was per-
formed to select only hits that were to be predicted to possess 
satisfactory physicochemical properties in the appropriate 
range recommended by the server. Analysis of Lipinski’s 
rule of five and some principal molecular descriptors affect-
ing pharmacokinetic properties were among the important 
criteria investigated for filtering. Especially, Lipinski’s RO5 
evaluates the drug-likeness behavior of studied hits which is 
necessary for rational drug design.

Molecular dynamics simulation

The top 4 ranked candidates based on molecular docking 
results were subjected to the MD simulation experiments 
for further evaluating the ligand-binding conformation, sta-
bility of their binding mode within the PAS-B domain of 
HIF-2α and clarification of the ligand–protein interactions 
in detail. The MD simulation was performed using Desmond 
5.6 academic version, provided by D. E. Shaw Research 
(“DESRES”), employing Maestro as graphical interface [43]. 
MD was performed using the Compute Unified Device Archi-
tecture (CUDA) API on two NVIDIA GPUs. As a first step, 
the complex derived from docking studies was imported in 
Maestro and by Desmond system builder was solvated into a 
cubic box filled with water, simulated by TIP3P model [44]. 
OPLS force field was used for MD calculations. OPLS-aa (all 
atom) includes every atom explicitly with specific functional 
groups and types of molecules including several bio-macro-
molecules [45, 46].  Na+ and  Cl− ions were added to provide 
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a final salt concentration of 0.15 M to simulate physiologi-
cal concentration of monovalent ions. Constant temperature 
(300 K) and pressure (1.01325 bar) were employed with 
NPT (constant number of particles, pressure and tempera-
ture) as ensemble class. RESPA integrator was used in order 
to integrate the equations of motion, with an inner time step 
of 2.0 fs for bonded and non-bonded interactions within the 
short-range cutoff [47]. Nose–Hoover thermostats were used 
to keep the constant simulation temperature [48], and the Mar-
tyna–Tobias–Klein method was applied to control the pressure 
[49]. Long range electrostatic interactions were calculated by 
particle-mesh Ewald method (PME) [50]. The cutoff for van 
der Waals and short-range electrostatic interactions was set 
at 9.0 Å. The equilibration of the system was performed with 
the default protocol provided in Desmond, which consists 
of a series of restrained minimizations and MD simulations 
applied to slowly relax the system. Consequently, one indi-
vidual trajectory for each complex of 100 ns was calculated. 
MD simulations experiments were performed also considering 
a reference inhibitor (PT-2440) to obtain a direct comparison. 
The trajectory files were analyzed by Simulation Event imple-
mented in the Desmond package. The same application was 
used to generate all plots concerning MD simulation presented 
in this study. Accordingly, the RMSD was calculated using the 
following equation:

where the  RMSDx is referred to the calculation for a frame 
x, N is the number of atoms in the atom selection; tref is the 
reference time (typically the first frame is used as the refer-
ence and it is regarded as time t = 0); and r′ is the position 
of the selected atoms in frame x, after superimposing on 
the reference frame, where frame x is recorded at time tx. 
The procedure is repeated for every frame in the simulation 
trajectory. Regarding the RMSF the following equation was 
used for the calculation:

where  RMSFi is referred to a generic residue i, T is the tra-
jectory time over which the RMSF is calculated, tref is the 
reference time, ri is the position of residue i; r′ is the position 
of atoms in residue i after superposition on the reference, 
and the angle brackets indicate that the average of the square 
distance is taken over the selection of atoms in the residue.

Ligand‑binding free energy estimation based 
on MM‑GBSA technique

The free energy calculation analysis provides a worthwhile 
predictive criterion to rank compounds with respect to 
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their binding affinities [51, 52]. Thus, the MD trajectories 
of the HIF-2α protein in complex with the selected inhibi-
tors from previous MD simulations were analyzed using 
the MM-GBSA technique. The evaluation of the ligand 
free energy for each ligand (ΔGbind in kcal/mol) was per-
formed using the MM-GBSA technique implemented in 
Maestro environment. The consequent ligand-binding free 
energy (ΔGbind) was estimated using the following equation: 
ΔGbind = ΔEMM + ΔGsolv + ΔGSA; where ΔEMM represents 
the difference in the minimized energies calculated for the 
ligand–receptor complex and the sum of the energies of the 
unbounded receptor and ligands. ΔGsolv denotes the differ-
ence in the Generalized Born Surface Area (GBSA) solva-
tion energy of the ligand–receptor complex and the sum of 
the unbounded receptor and ligands. ΔGSA represents the 
difference in the surface area energies for the ligand–recep-
tor complex and the sum of the surface area energies for the 
unbounded receptor and ligands [53, 54]. The thermal MM-
GBSA script available in Desmond (thermal_mmgbsa.py) 
[55] was used to evaluate the ΔGbind for the selected com-
plexes. This tool used the Desmond MD trajectory, splitting 
it into individual frame snapshots, and runs each one through 
MM-GBSA analysis. During the MM-GBSA calculation, 
1000 snapshots from the 100 ns MD simulation were used as 
input to compute the average binding free energy. The evalu-
ated ΔGbind are reported as average values in the “Results 
and discussion” section along with the energy components 
used in the calculation.

Results and discussion

Virtual screening and hit identification

VS studies of the commercial database are a fruitful resource 
for the identification of potentially bioactive molecules for a 
given drug target. The primary advantage of such methods is 
the significant decrease in overall time, costs, and resources 
associated with the development of a newfangled drug and 
pre-clinical research. In this regard, structure-based VS is 
quantitatively capable of predicting the accurate binding 
mode of ligands within the active site of the target protein, 
thereby preferentially ranking them in decreasing order of 
their binding affinities [56]. Thus, the starting NSC anti-
cancer library (almost 300,000 compounds) was screened 
against the HIF-2α subunit, targeting the PAS-B domain, 
using the VS procedure available in the Molegro Virtual 
Docker environment. Accurate binding affinity prediction 
between protein and ligand through molecular docking 
requires careful optimization of their 3D structures. There-
fore, the X-ray structure of the HIF-2α protein was opti-
mized in the protein preparation wizard, applying the OPLS-
2005 force field to remove bad atomic contacts in the 3D 
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structure and to obtain a structure with a lower energy state. 
Furthermore, the ligand preparation at the cellular pH value 
(7.4 ± 0.5) using LigPrep and taking into account possible 
ionization states guaranteed that all ligands are in the lowest 
energy conformation.

The grid box was placed on the previously reported water-
filled cavity inside the PAS-B domain of HIF-2α (PDB ID: 
6D09) and VS mode was set to retrieve the hit compounds 
with the best binding affinity towards the ligand-binding 
site. This method greatly reduced the number of initial 
compounds to 5% of the starting library, thereby enrich-
ing the library with more promising virtual hits. To validate 
the applied docking protocol, the co-crystallized inhibitor 
PT-2440 was re-docked within the PAS-B domain of the 
protein and its binding mode was explored. The analysis of 
the re-docking results divulged a similar binding mode of 
PT-2440 to that seen in its parent crystal structure in com-
plex with HIF-2α. The root-mean-square deviation (RMSD) 
value for the predicted conformation of this compound in 
comparison with its coordination in the crystal structure was 
0.14. Superimposition of the two structures of PT 2440, 
the best re-docked pose and the ligand in the co-crystal 
structure are provided in Fig. 4. As shown in this figure, 
the re-docked PT-2440 occupied a relatively hydrophobic 
region within PAS-B domain of HIF-2α that is surrounded 
by the amino acid residues  Phe280,  Tyr307,  Arg308,  Leu319, 
 Phe244,  Ser246,  Leu296,  Val302,  Gly323,  Ser304,  Ser292,  Met289, 
 Thr321 and  Ile261. As a result, these residues were found to 
be involved in the favorable hydrophobic interactions with 

PT-2440. As can be seen in the Table 1, these interactions 
were augmented by hydrogen binding formation with crucial 
residues  His293,  Ser304,  Ser292 and  Asn341. Moreover, several 
kinds of Pi interactions were observed with residues  Phe254, 
 Tyr281,  His248,  Ala277,  Met252,  Ile337,  Met309 and  Cys339 that 
contribute to further stability of ligand in the binding site.

Satisfied with the validity of the docking procedure, the 
members of virtual library were docked into the same bind-
ing site of the HIF-2α. After screening, the compounds were 
sorted by MolDock and Re-rank scores, and final hit selec-
tion was conducted based on obtaining the minimum Mol-
Dock score. consequently, this filter rendered five top-ranked 
hits, NSC106416, NSC217021, NSC21706, NSC215639, 
and NSC277811 as potential inhibitors to continue the fur-
ther examination. The chemical structures of these com-
pounds are shown in Fig. 5. All information of five selected 
compounds including docking score values and key residues 
involved in the intermolecular interactions are summarized 
in Table 1. Visual scrutiny also revealed that the best bind-
ing pose of the five selected molecules engaged the same 
internal cavity in the PAS-B domain of HIF-2α as PT-2440, 
providing appropriate hydrophobic and hydrogen bond inter-
actions. A close-up view of the best-docked pose of the five 
top-ranked hits interacting with key amino acids inside the 
hydrophobic cavity of the HIF-2α PAS-B domain along with 
their 2D interaction diagram is depicted in Fig. 6.

As shown in Fig. 6, the predicted binding mode of these 
hits was predominantly driven by the extensive hydrophobic 
interactions by amino acid residues such as  Ile337,  Val302, 

Fig. 4  Comparison of the two bound conformations of the reference 
ligand, PT-2440, inside the PAS-B cavity of HIF-2α along with a 
detailed zoom into the prominent interacting amino acids of binding 
site: the pink model shows the X-ray crystallographic orientation, and 

the best re-docked pose is shown as a yellow model. The solid ribbon 
model displays the backbone of PAS-B domain of HIF-2α, while key 
interacting residues are shown as stick models
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 Leu319,  Leu296,  Phe244, and  Phe280. Moreover, the obtained 
results pointed out that  Ser246,  Asn341,  Tyr307,  Cys339, and 
 His293 were substantial amino acid residues in the holding 

of molecules in the binding site through multiple hydrogen 
bond interactions. Further stability of the ligands in the bind-
ing cavity was owed to the various parallel pi interactions 

Table 1  Interaction details for five top-ranked compounds resulting from docking into the hydrophobic cavity of HIF-2α PAS-B domain using 
structure-based VS

Entry Mol Dock score Re-rank score Amino acids involved in interactions

Hydrophobic interactions Hydrogen bond interactions Pi interactions

NSC106416 − 170.10 − 103.49 Phe280,  Ala277,  Phe254,  Ile261, 
 Phe244,  Ala277,  Leu319, 
 Val302,  Thr321,  Thr324, 
 Met252,  Ser304,  Ser292,  Met289

Tyr307,  Ser246,  Asn341, 
3*His293,  Gly323,  Cys339

Leu292,  Thr281,  Ile337,  Met309 
(pi-Alkyl)

NSC217021 − 158.13 − 105.00 Gly323,  Thr321,  Phe244,  Phe254, 
 Ala277,  Phe280,  Tyr281, 
 Ser292,  His248,  Tyr307,  Leu296, 
 Leu319,  Ile337,  Val302,  Val303

Cys339,  Asn341,  Ser246,  Ser304, 
 Gly323

Met252 (Pi-Sulfur);  Met309, 
 Ala277,  Met289 (Pi-Alkyl)

NSC215639 − 135.27 − 92.27 Ser292,  Gly323,  Leu296,  Ser304, 
 Met252,  Ile337,  Ile261,  Phe244, 
 His248,  Leu319,  Phe280,  Tyr307

Tyr281,  Asn341, 2*Ser246, 
 Ser304,  Gly323

His293,  Met309,  Cys339 (Pi-Sul-
fur);  Phe254 (Pi–Pi);  Ala277, 
 Met289 (Pi-Alkyl)

NSC217026 − 176.05 − 128.53 Thr290,  Val302,  Leu296,  Thr321, 
 Ile337,  Phe254,  Phe280,  Ala277, 
 Leu319,  Gly323,  Ile265,  Ile261, 
 Phe244,  His248

Ser304,  Cys339,  Ser246,  Asn341, 
2*Tyr307,  Gly323,  Ala277

Met252 (Pi-Sulfur),  Met289, 
 Tyr281,  Met309 (Pi-Alkyl)

NSC277811 − 174.92 − 139.8 Ser292,  His248,  Tyr281,  Met309, 
 Ala277,  Thr321,  His293,  Tyr307

Tyr281,  His293,  Tyr307,  Ala277, 
 Met309,  Thr321

Val302,  Met289,  Ile337,  Met252
(Pi-Alkyl)
Cys339 (Pi-Sulfur)

PT-2440 − 151.04 − 119.84 Phe280,  Tyr307,  Arg308,  Leu319, 
 Phe244,  Ser246,  Leu296, 
 Val302,  Gly323,  Ser304,  Ser292, 
 Met289,  Thr321,  Ile261

His293,  Ser304,  Ser292,  Asn341 Phe254,  Tyr281,  His248 (Pi–Pi 
stacking)

Ala277,  Met252,  Ile337 (Pi-Alkyl)
Met309,  Cys339 (Pi-Sulfur)

Fig. 5  2D Chemical structures of the top 5 hits with the best predicted binding affinities found by structure-based VS studies within NCI anti-
cancer library as possible HIF-2α inhibitor
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Fig. 6  (Left) 3D representation of the putative-binding mode of 
the five top-scored hits as well as known inhibitor, PT-2440, inside 
the hydrophobic cavity of HIF-2α PAS-B domain. In each case, 
the ligand in the binding site is shown as ball and stick model, and 
colored by elements, while the key interacting amino acid residues 
of binding site are represented by stick models. Hydrogen bonds are 

marked as blue dash lines. (Right) The representation of the 2D inter-
action diagram of the five top-screened ligands and PT-2440 with the 
important amino acid residues inside the hydrophobic cavity of the 
HIF-2α PAS-B domain. The figures were created using the Accelrys 
discovery studio visualizer software

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Molecular Diversity

1 3

Fig. 6  (continued)
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(pi–pi, pi-sulfur, and pi-alky types) which were responsi-
ble for fruitful contacts between the ligand and some of 
the crucial amino acid residues such as  Phe254,  Met309, 
 Met289, and  Cys339 (see Table 1). Based on the results seen 
in Table 1, among 5 potential hits, molecules NSC106416, 
NSC217021, NSC217026, and NSC277811, specially 
NSC217026 (MolDock score − 176.05 kcal/mol), were 
predicted to have more negative MolDock score values 
(ranged from − 176.05 to − 158.13 kcal/mol) than refer-
ence compound, PT-2440 (− 151.04 kcal/mol). The cavity 
inside HIF-2α PAS-B domain has been known to have a 
hydrophobic profile. Therefore, the difference in the bind-
ing scores, could be due to greater range of amino acids 
that were predicted to participates in hydrophobic and Pi 
Interactions. This implies that these compounds with higher 
in silico binding affinities, probably stand as the most sta-
ble ligands in the HIF-2α PAS-B internal cavity. Among 
these compounds, compound NSC217026 with the lowest 
MolDock score particularly exhibited the highest number 
of molecular interactions via hydrogen bonds and various 
pi contacts.

Analysis of Lipinski and physiochemical properties

In the early stages of rational drug design campaigns, the 
elimination of the weak druggable candidates and focus on 
the compounds with more likely successful drug-like proper-
ties is of utmost importance. The inclusion of a pharmacoki-
netics profile in the drug candidate selection can improve 
the probability of clinical success, thereby speeding up lead 
identification. Nowadays, in silico techniques are widely 
used for the fast prediction of pharmacokinetic properties, 
known as ADMET, of new chemical entities preceding 

expensive experimental procedures [57, 58]. Thus as a part 
of the current study, the SwissADME free web server was 
applied for in silico assessment of drug-like behavior of five 
hit molecules selected from the VSW through the prediction 
of some key physicochemical parameters and “Lipinski’s 
rule of five” (RO5). Lipinski’s RO5 is widely used as the 
criterion for a description of four important physicochemical 
properties via defining ranges derived from FDA-approved 
drugs, which are known to have clinically acceptable ADME 
properties in the human body. This rule states that a favora-
ble drug-like molecule should have: (1) a partition coef-
ficient (logP) ≤ 5; (2) a molecular weight (MW) ≤ 500 g 
 mol−1; (3) several hydrogen bond acceptors ≤ 10 (notably 
N and O atoms); (4) a number of hydrogen bond donors ≤ 5 
(OH and NH groups). Any value differing from these values 
was considered a violation. The acceptable value of RO5 
violations for a drug-like molecule is 1 [59]. As seen in 
Table 2, among five selected hits, three molecules lacked 
any Lipinski violations and thereby signified to possess 
appropriate drug-like potential. The results also indicate 
that all molecules, except the NSC277811, concurred with 
the acceptable range defined for the partition coefficient 
between octanol and water (logP). Compound NSC277811 
exhibited a value of logP slightly out of the allowed limit. 
This physicochemical property, in turn, fits with Lipinski’s 
RO5 and remarkably affects the distribution, oral absorp-
tion, and permeability properties of compounds within the 
body through the biological membranes. In addition, this 
molecule was found to have PSA (202.46 Å), polar surface 
area, more than the maximum permissible limit (200.0 Å). 
This descriptor holds a great influence on drug bioavail-
ability and shown to correlate well with passive molecular 
transport across the membranes [60]. QPlogKhsa is another 

Table 2  The ADMET prediction of four top hits obtained from structure-based VS

The selected physicochemical properties were calculated using SwissADME online web server (www. swiss adme. ch)
a logP predicted octanol/water partition coefficient (acceptable range or recommended value for 95% of known drugs -2-6.5)
b PSA predicted Van der Waals surface area of polar nitrogen and oxygen atoms and carbonyl carbon atoms (acceptable range or recommended 
value for 95% of known drugs 7-200.0)
c QPlogKhsa predicted binding to human serum albumin (acceptable range or recommended value for 95% of known drugs -1.5-1.5)
d Predicted number of violations of Lipinski’s rule of five. The rules are: MW < 500, PlogP < 5, donorHB ≤ 5, accptHB ≤ 10 (acceptable range or 
recommended value is maximum 1)
e Predicted capability to behave as false positives or pan assay interference compounds (PAINS) in VS (recommended value is 0)

Entry H-bond 
donor ≤ 5

H-bond 
acceptor ≤ 10

Molecular weight 
(g/mol) ≤ 500

logPa ≤ 5 PSAb (Å2) QPlogKhsac Rule of  fived PAINS  alerte

NSC106416 6 8 418.40 1.66 193.06 − 0.306 1 0
NSC217021 5 6 390.33 0.83 157.18 − 0.233 0 0
NSC215639 1 8 414.32 1.55 164.86 0.666 0 0
NSC217026 5 6 390.35 1.38 170.32 − 0.273 0 0
NSC277811 3 10 409.38 − 2.14 202.46 − 0.83 1 0
PT-2440 1 10 405.296 1.899 90.962 − 0.323 0 0
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crucial property reflecting the binding degree of the drug 
molecule to the proteins within blood plasma such as human 
serum albumin. It is noteworthy that the binding of drugs 
to plasma proteins reduces the quantity of the free drug in 
blood circulation. The predicted values revealed that all of 
the selected hits are compliant with the prescribed range 
of this parameter. Thus, selected molecules are likely to 
circulate freely within the bloodstream, possessing acces-
sibility to the target site. Further, hits were inspected for 
their potential capability to behave as pan assay interfer-
ence compounds (PAINS). The PAINS compounds tend to 
nonspecifically react with a wide range of biological targets 
instead of specifically affecting one desired target, provid-
ing false positive compounds [61]. Based on this criterion, 
all hits have no sub-structural features that marked them as 
“frequent hitters” in high-throughput screenings. Overall, 
results suggest that 4 out of 5 molecules (in Table 2) satisfy 
both Lipinski’s RO5 and desired pharmacokinetic proper-
ties. Consequently, to limit the number of drug-like virtual 
hits, these molecules were selected as final survivors from 
this step to proceed to the further in silico experiments.

Molecular dynamic (MD) simulation analysis

MD simulation is one of the fundamental in silico tech-
niques for gaining insights into ligand-induced conforma-
tional changes and fluctuations in the protein structure on 
the time scales through introducing atomic-level perturba-
tions. Unlike molecular docking, in MD simulations, the 
nature of macromolecules is allowed to be highly flexible 
and dynamic and more similar to their biologically relevant 
systems in cellular physiological conditions [62]. Thus, 
using the best binary complexes of the four final selected 
hits with the PAS-B domain of HIF-2α as the starting point, 
a 100 ns MD simulation was performed in an explicit hydra-
tion environment. The main objective of MD simulations 
was to ensure the stability of the proposed binding mode of 
ligands within the target binding site of HIF-2α as a func-
tion of simulation time. To assess the binding immovability, 

structural properties, and convergence of the system during 
the simulation time, the resulting MD trajectories for all 
complexes were analyzed through different standard simula-
tion parameters. In this regard, overall structural fluctuations 
and conformational stability of each complex were evalu-
ated by analyzing the Root-mean-square deviation (RMSD) 
of the protein backbone and alpha carbon atoms versus 
simulation time. The RMSD demonstrates the deviation of 
atoms in the protein’s structure during the MD simulation 
time. The RMSD value of alpha carbons in the protein’s 
structure should be smaller than 2 Å during the phase that 
the system has been equilibrated. The higher the RMSD 
value is, the more conformational changes the system has 
experienced. The flatter RMSD slope that appeared during 
the time of simulation is a good indicator of a more stable 
system. In contrast, a high range of fluctuations seen in the 
RMSD graph implies an unstable binding of the ligand to 
the desired protein structure.

In general and considering the all the selected complexes, 
the RMSD plots of selected hits showed that the mentioned 
complexes reached an equilibrium status and then remained 
stable throughout the simulation after few nanoseconds. 
Moreover, the variation of RMSD values is limited, sug-
gesting that all compounds folded into a more stable state 
than the starting structure during the time of the simulation. 
Accordingly, the observed binding stability of the analyzed 
systems well bolstered the credibility of previous docking 
outcomes, indicating a stabilized binding mode of these 
compounds with target cavity inside the PAS-B domain of 
HIF-2α under the given simulation conditions. A compari-
son between the RMSD plots revealed that NSC217026 had 
the least fluctuations in RMSD, thus the most stability dur-
ing the MD simulations compared to three other hits under 
the same MD simulation conditions. This compound had 
a rising in the first 20 ns and then rapidly reached an over-
all stability, whereas the bound state of other compounds 
revealed a longer equilibration time.

Root-mean-square fluctuation (RMSF) measurement is 
a useful method to provide an overall perspective of the 
dynamic behavior of individual residues in the protein back-
bone based on their location and involvement in the interac-
tion with a specific ligand. This analysis provides a better 
perspective to identify the flexible regions in the protein 
structure. The higher value of RMSF indicates the higher 
amount of atomic fluctuation of the atomic Cα coordinates 
of the protein from its average position within the MD simu-
lations. As shown in RMSD plots, the overall pattern of resi-
due fluctuations in studied complexes was found to be almost 
similar to that of HIF-2α protein in complex with PT-2440. 
The all selected complexes showed a limited fluctuation with 
the exclusion of a restricted number of residues at the N- and 
C-terminal ends that are far from the ligand-binding site. In 
this regard, the key residues interacting with ligand in the 

Fig. 7  A RMSD calculation for the complex PAS-B domain of 
HIF-2α/NSC106416 investigated in this study: protein (blue line) 
and ligand (red line); B RMSF calculation of the PAS-B domain of 
HIF-2α; C, D NSC106416 monitored in the course of the MD run. 
The interactions can be grouped into four types: H-bonds (green), 
hydrophobic (gray), ionic (magenta), and water bridges (blue). 
The subsequent diagram of the figure illustrates a timeline descrip-
tion of the main interactions. A darker hue of orange indicates that 
some residues make many distinct contacts with the ligand (Maestro, 
Schrödinger LLC, release 2020-3)

◂
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HIF-2α binding site such as  Phe244,  Tyr281,  His293,  Met309, 
 Cys339 and  Asn341 exposed rigid behavior with the lowest 
amounts of fluctuations (RMSF < 1 Å) in the all MD simula-
tion experiments. The low flexibility of these residues veri-
fied their capability for formation of stable interaction with 
ligand compared to other residues in HIF-2α binding site.

This small range of RMSFs demonstrated that ligands 
were capable to form stable and suitable interactions with 
the protein-binding site during MD simulation. These results 
were in perfect accordance with the findings from the analy-
sis of the RMSD plot.

The MD trajectories of each ligand were also analyzed to 
gain more comprehensive information about intermolecular 
interactions using the tools available in Desmond software 
reporting a timeline evaluation of the binding of ligands. 
Starting from compound NSC106416, we described the 
most relevant interactions found during over the course of 
simulation. The output of this analysis is reported in Fig. 7. 
As observed in plots Fig. 7C and D, the compound was able 
to maintain the binding mode found by molecular docking 
studies, establishing strong polar interactions with the fol-
lowing residues  Tyr281,  Ser292,  Tyr307, and  Asn341 through 
several H-bond interaction. In particular, the stable hydro-
gen bond formed by  Tyr281 residue was almost permanently 
preserved in the whole simulation. While additional polar 
contacts were also detected with the  Phe244 and  Thr321, 
hydrophobic interactions could be established with  Phe254, 
 Phe280,  Tyr281, and  Met309 that fortified the stability of the 
retrieved binding mode.

The output of the MD analysis for compound NSC215639 
is reported in Fig. 8. As indicated in plots Fig. 8C and D, 
the binding mode of this compound was primarily medi-
ated by a strong network of hydrophobic interactions. In this 
regard, the key lipophilic residues  Phe254,  Tyr281,  Met289, 
 Leu296, and  Tyr307 were particularly targeted for establish-
ment of various hydrophobic contacts with ligand during the 
simulation. In particular, this ligand was able to maintain 
hydrophobic interaction with  Phe254 during entire simulation 
time. In addition to the contacts found by docking studies, 
the formation of a favorable H-bond with the residue  Cys339 
also contributes to the significant binding affinity of this 
compound within the selected binding site.

The MD analysis of NSC217021 is illustrated in Fig. 9. 
As shown in plots Fig. 9C and D, the main contacts found by 
docking studies of this compound were reproduced during 
MD simulation. Furthermore, The 100 ns MD simulation 
was deciphered the formation of additional strong contacts 
with the residues  His248,  Tyr281, and  His293 as well as  Leu296 
through H-bond and hydrophobic interactions, respectively.

As reported in Fig. 10, the pattern of interaction observed 
in docking model of hit compound NSC217026 was pre-
served during MD simulation. The MD analysis well con-
firmed that residues  Tyr281,  Ser246,  His248, and  Asn341 were 
the main hydrogen-bond-interacting residues with this 
ligand. In particular,  Tyr281 was found as interacting resi-
due that regularly participated in H-bond formation through-
out the simulation time. In line with the docking studies, 
this residue appears to be one of the crucial residues within 
the ligand-binding pocket of HIF-2α. Moreover, this com-
pound was sporadically involved in additional contacts with 
 Tyr267,  Leu272,  Met289 (hydrophobic interactions), and  Ser292 
(H-bond), leading to further improving the binding affinity 
of this compound for the selected binding site.

Finally, the MD results obtained for the co-crystallized 
ligand (PT-2440) were analyzed, comparing the stability and 
the established contacts within the HIF-2α-binding pocket 
with respect to the output gained for the compounds selected 
by VS. As indicated in Fig. 11, the stability of protein–ligand 
complex was found to be almost similar to the previous 
analyses with small fluctuations of the system. The ligand 
PT-2440 strongly maintained the most favorable contacts 
found by molecular docking with small variations, such as 
the interactions with  Phe254,  Ser292, and  His293. In addition, 
residues  Tyr281 and  Met289 were detected to be appropriate 
for making new strong contacts in the form of hydrophobic 
and water mediated H-bonds with the PT-2440.

Considering insignificant variations of interactions with 
the crucial residues in the binding site during MD of the 
selected compounds, it is plausible to believe that identi-
fied molecules are capable of tightly binding to the PAS-B 
domain of HIF-2α with the reasonable thermodynamic sta-
bility. To further corroborate this hypothesis, we also con-
ducted a ligand-binding energy calculation applied on the 
MD simulation trajectories for each presented complex. The 
output is reported in the next section.

Binding‑free energy analysis based on MM‑GBSA 
calculations

The accurate prediction of the binding affinity of top-ranked 
hits in VS protocols is an important task to prioritize the 
screened compounds with high confidence for chemical 
synthesis and biological evaluations. The scoring functions 
used by various docking tools ignore the flexibility of the 
protein target and some essential thermodynamic factors in 

Fig. 8  A RMSD calculation for the complex PAS-B domain of 
HIF-2α/NSC215639 investigated in this study: protein (blue line) 
and ligand (red line); B RMSF calculation of the PAS-B domain of 
HIF-2α; C, D NSC215639 monitored in the course of the MD run. 
The interactions can be grouped into four types: H-bonds (green), 
hydrophobic (gray), ionic (magenta), and water bridges (blue). 
The subsequent diagram of the figure illustrates a timeline descrip-
tion of the main interactions. A darker hue of orange indicates that 
some residues make many distinct contacts with the ligand (Maestro, 
Schrödinger LLC, release 2020-3)

◂
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the prediction of free binding energy such as protein and 
ligand solvation energy terms, and as a consequence, their 
accuracy in ranking compounds based on their binding 
affinities is quite weak [63, 64]. Recently, updated meth-
ods have considered a combination of molecular mechani-
cal force fields with continuum solvation models, such as 
MM-GBSA enables us to make more accurate predictions 
of the free binding energy of ligands from MD trajectories. 
Considering that all calculations in MM-GBSA are based on 
the initial and final states of MD simulations, this method 
has recently emerged as one of the “end-point” approaches 
in drug discovery protocols. This approach can predict the 
contributions of a range of important interactions including 
both polar and non-polar types in the protein–ligand-binding 
event [65, 66]. Thus, in the last step of our computational 
workflow, the trajectory models obtained from the previous 
MD simulations were submitted to the MM-GBSA calcula-
tion to further substantiate the binding affinity of top-ranked 
hits with favorable thermodynamics towards the target bind-
ing site. The predicted ΔGbind of the final selected hits along 
with their contributions to the total binding free energy from 
various energy components are provided in Table 3.

As shown in Table 3, all compounds were predicted to be 
potent, having negative binding free energy values (ΔGbind), 
ranging from 86.18 to − 101.72 kcal/mol. These values were 
found to be more negative with respect to the reference 
compound PT-2440. Accordingly, the MM-GBSA analysis 
demonstrated that among the 4 candidates, the most favora-
ble binding energy was scored by NSC217026 with ΔGbind 
value of − 101.72 kcal/mol. The superior binding energy of 
NSC217026 correlated with higher values of van der Waals 
(− 73.81 kcal/mol) and electrostatic (− 39.06 kcal/mol) 
interaction energies (Table 3). This indicates that this com-
pound was more stable than others in the protein-binding 
site, thereby possessing the highest in silico binding affin-
ity towards the PAS-B cavity of HIF-2α. Interestingly, this 
finding was in accordance with the better MolDock score 
of this hit (− 176.05 kcal/mol) compared to the other three 
hits estimated from preliminary VS experiments. The bind-
ing energy of NSC217026 also correlated with its RMSD 
graph, which indicated a stable binding with the PAS-B 
domain of the HIF-2α factor during the MD simulation. 
Among three other hits, NSC 215639 exhibited relatively 

close binding energy (− 92.56 kcal/mol) with respect to the 
best hit, NSC217026.

The general inspection of the free energy components in 
Table 3 revealed that the van der Waals interaction energy 
(ΔGvdW) is the most important contributor to the ligands 
binding energy. This observation emphasizes the critical 
importance of hydrophobic interactions in the stability of the 
ligand–protein complexes, which is logical considering the 
highly hydrophobic nature of the hydrophobic cavity inside 
the PAS-B domain of HIF-2α.

Conclusion

In the present study, owing to the substantial responsibility 
of HIFs in the adaptation of cancer cells exposed to hypoxic 
stress, efforts aimed at identifying new small-molecule 
inhibitors against the HIF-2α subunit. This subunit has been 
known to have a large and unique internal hydrophobic cav-
ity within its PAS-B domain, which has been considered a 
compelling therapeutic target in antineoplastic drug design 
during the past decade. Therefore, we developed a reliable 
structure-based VS process with the combination of in silico 
methods to discover potent direct HIF-2α inhibitors from the 
NCI database using structural information of the HIF-2α 
PAS-B domain co-crystallized with ligand PT-2440. In 
this respect, computational evaluation of a starting library 
of over 200,000 compounds was performed in several hier-
archical filtering steps to reduce the number of screened 
compounds to an enriched set of the most promising can-
didates. The exploited filtering criteria in the order of steps 
included: (1) the estimated MolDock score values lower than 
− 135.0 kcal/mol obtained from the structure-based VS; (2) 
having satisfactory pharmacokinetic and ADME profiles 
within the acceptable range described for a drug-like mol-
ecule as predicted by using SwissADME web server; (3) MD 
simulation studies to disclose conformational and binding 
stability of top drug-like virtual hits within the ligand-bind-
ing site of HIF-2α; (4) The best binding free energy values 
calculated using MM-GBSA method.

The structure-based VS resulted in the final selec-
tion of five top-ranked hits: NSC106416, NSC217021, 
NSC217026, NSC215639, and NSC277811 with favorable 
docking scores. In addition, the detailed binding modes of 
all five compounds revealed their vital hydrogen bond and 
hydrophobic interactions with binding pocket’s residues of 
HIF-2α PAS-B domain such as  Phe254,  Tyr281,  His293,  Phe280, 
 His248,  Cys339,  Asn341, and  Met309. These molecules, except 
the NSC277811, satisfied the standard drug-likeness proper-
ties for human purposes and lacked false positive warnings 
during PAINS analysis. The analysis of MD simulation tra-
jectories showed a significant stability of four selected drug-
like hits bound to the target cavity inside the PAS-B domain 

Fig. 9  A RMSD calculation for the complex PAS-B domain of 
HIF-2α/NSC217021 investigated in this study: protein (blue line) 
and ligand (red line); B RMSF calculation of the PAS-B domain of 
HIF-2α; C, D NSC217021 monitored in the course of the MD run. 
The interactions can be grouped into four types: H-bonds (green), 
hydrophobic (gray), ionic (magenta), and water bridges (blue). 
The subsequent diagram of the figure illustrates a timeline descrip-
tion of the main interactions. A darker hue of orange indicates that 
some residues make many distinct contacts with the ligand (Maestro, 
Schrödinger LLC, release 2020-3)

◂
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Fig. 10  A RMSD calculation for the complex PAS-B domain of 
HIF-2α/NSC217026 investigated in this study: protein (blue line) 
and ligand (red line); B RMSF calculation of the PAS-B domain of 
HIF-2α; C, D NSC217026 monitored in the course of the MD run. 
The interactions can be grouped into four types: H-bonds (green), 

hydrophobic (gray), ionic (magenta), and water bridges (blue). 
The subsequent diagram of the figure illustrates a timeline descrip-
tion of the main interactions. A darker hue of orange indicates that 
some residues make many distinct contacts with the ligand (Maestro, 
Schrödinger LLC, release 2020-3)
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Fig. 11  A RMSD calculation for the complex PAS-B domain of HIF-
2α/PT-2440 investigated in this study: protein (blue line) and ligand 
(red line); B RMSF calculation of the PAS-B domain of HIF-2α; C, 
D PT-2440 monitored in the course of the MD run. The interactions 
can be grouped into four types: H-bonds (green), hydrophobic (gray), 

ionic (magenta), and water bridges (blue). The subsequent diagram of 
the figure illustrates a timeline description of the main interactions. A 
darker hue of orange indicates that some residues make many distinct 
contacts with the ligand (Maestro, Schrödinger LLC, release 2020-3)
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of HIF-2α compared to the reference drug, PT-2440. At 
the final point of our screening workflow, the results of the 
MM-GBSA calculation, in comparison with the reference 
drug PT-2440, were indicative of the best binding energy of 
NSC217026 and thereof highest binding affinity towards the 
binding site of HIF-2α PAS-B domain among the selected 
final hits. This finding was in satisfactory agreement with 
the results of molecular docking and MD simulation and so 
supported the credibility of our VS strategy. Consequently, 
the hit NSC217026 could be considered as an encourag-
ing template for the development of the next generation of 
anti-cancer agents with direct inhibitory potential against the 
PAS-B domain of HIF-2α. In this context, future experimen-
tal investigations of this compound on hypoxic cancer cells 
would be suggested to provide explicit indications for the 
design of analogous structures with improved pharmacologi-
cal features and properties.
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